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Abstract

Large Language Models (LLMs) may suffer from hallucina-
tions in real-world applications due to the lack of relevant
knowledge. In contrast, knowledge graphs encompass exten-
sive, multi-relational structures that store a vast array of sym-
bolic facts. Consequently, integrating LLMs with knowledge
graphs has been extensively explored, with Knowledge Graph
Question Answering (KGQA) serving as a critical touchstone
for the integration. This task requires LLMs to answer nat-
ural language questions by retrieving relevant triples from
knowledge graphs. However, existing methods face two sig-
nificant challenges: excessively long reasoning paths distract-
ing from the answer generation, and false-positive relations
hindering the path refinement. In this paper, we propose an
iterative interactive KGQA framework that leverages the in-
teractive learning capabilities of LLMs to perform reasoning
and Debating over Graphs (DoG). Specifically, DoG employs
a subgraph-focusing mechanism, allowing LLMs to perform
answer trying after each reasoning step, thereby mitigating
the impact of lengthy reasoning paths. On the other hand,
DoG utilizes a multi-role debate team to gradually simplify
complex questions, reducing the influence of false-positive
relations. This debate mechanism ensures the reliability of
the reasoning process. Experimental results on five public
datasets demonstrate the effectiveness and superiority of our
architecture. Notably, DoG outperforms the state-of-the-art
method ToG by 23.7% and 9.1% in accuracy on WebQues-
tions and GrailQA, respectively. Furthermore, the integration
experiments with various LLMs on the mentioned datasets
highlight the flexibility of DoG.

Code — https://github.com/reml-group/DoG

Introduction
Large Language Models (LLMs), characterized by their sub-
stantial parameter amount (Zhang et al. 2023) and training
on extensive, diverse, and unlabeled data (Rawte, Sheth, and
Das 2023), exhibit remarkable proficiency in a wide range
of natural language understanding and generation tasks (Lin
et al. 2023; Liu et al. 2024). For example, GPT-4 (Achiam
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Figure 1: Illustration of challenges and our solutions.

et al. 2023) demonstrates human-level performance across
a majority of professional and academic exams originally
intended for humans. However, recent studies (Guan et al.
2024; Waldendorf, Haddow, and Birch 2024; Gunjal, Yin,
and Bas 2024; Ma et al. 2023) have revealed that they may
suffer from hallucinations in real-world applications due to
a deficiency in relevant knowledge.

Knowledge graphs (Wang et al. 2024) are large-scale,
multi-relational structures housing a plethora of sym-
bolic facts, such as the triple <The Eiffel Tower,
locatedIn, Paris>. The incorporation of these struc-
tured facts may tackle the aforementioned issue of hallu-
cinations in LLMs (Guan et al. 2024; Quintero-Narvaez
and Monroy 2024; Shi et al. 2023). One approach to eval-
uating the integration of knowledge graphs with LLMs is
through Knowledge Graph Question Answering (KGQA)
(Ji et al. 2022), which requires machines to answer natural
language questions by retrieving relevant facts from knowl-
edge graphs. Recent works (Li et al. 2024; Toroghi et al.
2024; Nie et al. 2024) primarily follow an iterative inference
paradigm, consisting of two steps: (1) identifying the ini-
tial entity in the question, and (2) retrieving and refining the
inference path iteratively until reaching the answer or ob-
taining sufficient evidence to answer the question. Although
they have achieved significant success, they still suffer from
excessively long paths and false-positive relations.

Challenge 1: excessively long paths distracting from
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the answer generation. Existing methods (Ye et al.
2022; Guo et al. 2023a; Kim et al. 2023) usually
feed a lengthy evidence path like {<Albert Nobbs,
starred by, Glenn Close>, · · ·, <Air Force
One, starred by, Gray Oldman>, · · ·} at the top
of Fig. 1 into LLMs to perform answer generation in a single
step, which may make it challenging for LLMs to discern the
key points in the path. For instance, LLMs may focus on the
tail entity Glenn Close and employ their internal prior
knowledge to generate answers. This will result in answers
that appear reasonable but are incorrect.

Challenge 2: false-positive relations hindering the path
refinement. Current methods (Bai et al. 2023; Hu et al.
2024; Li et al. 2024) typically focus on identifying relations
within graphs that closely match or have the same meaning
as those in the questions, even if the relations have already
been identified in previous reasoning steps. For example, at
the top of Fig. 1, these methods may select starred by,
which was used in the previous reasoning step and is men-
tioned in the question, to expand paths rather than choosing
in language when dealing with the entity Air Force
One. This will lead to incomplete evidence paths.

To address these challenges, we propose an iterative in-
teractive KGQA framework that leverages the interactive
learning capabilities of LLMs to perform reasoning and
Debating over Graphs, dubbed DoG. Unlike existing ap-
proaches (Jiang et al. 2023a; Luo et al. 2023; Sun et al. 2024)
that seek to construct a complete evidence chain before an-
swering questions, our architecture employs a subgraph-
focusing mechanism that allows LLMs to perform answer
trying after each reasoning step. For each filtered triple,
DoG uses LLMs to assess whether sufficient information is
available to answer the current question. In this way, the
triple in each reasoning step, such as <Glenn Close,
starred, AirForce One> in the bottom of Fig. 1,
can be deeply pondered by LLMs. If the triple does not sup-
port answering the current question, DoG employs a multi-
role LLM team to debate and simplify the question based
on the triple. The iterative process allows complex multi-
hop questions to be gradually transformed into single-hop
questions, which enables LLMs not to be disturbed by the
relation that is retrieved in the previous reasoning step. For
example, the relation starred by that is linked with Air
Force One will not disturb reasoning after the simplifi-
cation procedure ②. This is inspired by the human brain in
tackling complex questions, which guides LLMs to reason
on graphs through chain-of-thought (Wei et al. 2022). The
simplification process can also enhance the transparency of
the reasoning process.

To verify the effectiveness and superiority of our archi-
tecture, we conduct thorough experiments on five public
KGQA datasets: MetaQA (Zhang et al. 2018), WebQSP (Yih
et al. 2016), CWQ (Talmor and Berant 2018), WebQues-
tions (Berant et al. 2013), and GrailQA (Gu et al. 2021).
Our findings show that DoG achieves state-of-the-art results
on all datasets, except for the 2-hop and 3-hop questions
within MetaQA. Notably, DoG outperforms the strong base-
line ToG (Sun et al. 2024) by 23.7% and 9.1% in accuracy
on WebQuestions and GrailQA, respectively. In summary,

our contributions are threefold.
• We propose a flexible and reliable reasoning framework,

DoG, which enables LLMs to reason and debate over
knowledge graphs and answer questions after thorough
deliberation.

• We introduce a strategy, which transforms questions from
complex to easy through the interactive learning of a
multi-role LLM team, for handling complex reasoning
on knowledge graphs. This guides LLMs to engage in
step-by-step reasoning, thereby enhancing the reliability
of the reasoning process.

• Extensive experiments and ablation studies are carried
out on five public datasets to demonstrate the effective-
ness and superiority of our architecture. Furthermore, we
also conduct integration experiments with various LLMs
to verify the flexibility of DoG.

Related Work
The methods of LLM reasoning over knowledge graphs can
be classified into batch triple recalling, and reasoning path
refining from the perspective of evidence gathering.

Batch triple recalling. Knowledge graphs typically store
an extensive amount of facts (Cui et al. 2023). For instance,
Freebase (Bollacker et al. 2008) contains over 1.9 billion
triples, and even the smaller non-open-domain MetaQA
(Zhang et al. 2018) includes over 130,000 triples. The num-
ber of relevant triples can be substantial even when con-
strained by the entities in a given question. Injecting all these
triples into the context window of LLMs to perform reason-
ing not only incurs a high encoding cost but also introduces
significant noise (Wei et al. 2023). To address this issue, pre-
vious studies (Shu et al. 2022; Ye et al. 2022; Guo et al.
2023a) focus on how to filter suitable facts. For instance,
KAPING (Baek, Aji, and Saffari 2023) projects questions
and triples into the same space to obtain relevant knowledge
by semantic similarity. KG-GPT (Kim et al. 2023) further
focuses on fine-grained question representations, decompos-
ing multi-hop questions into sub-questions and matching
the relations associated with entities in those sub-questions,
then selecting the top-k relevant relations to form evidence
triples. Similarly, KGR (Guan et al. 2024) splits the retrieved
triples into several chunks and utilizes LLM to distinguish
the critical triple relevant with questions.

Reasoning path refining. The paradigm of this kind of
method (Gu, Deng, and Su 2023; Jiang et al. 2023a; Liu et al.
2023; Luo et al. 2023; Sun et al. 2024; Guo et al. 2023b) is
first to identify the initial entity in the question, then to iter-
atively retrieve and refine the reasoning path until reaching
the answer or obtaining sufficient evidence to answer the
question, and finally to employ LLMs to generate answers
based on the refined path. For example, Jiang et al. (2023a)
proposed an iterative reading-reasoning approach, which it-
erates an invoking-linearization-generation procedure. It uti-
lizes LLMs to perform reasoning on the interface that is
specifically designed for reading structured data until deriv-
ing the final answer. Similarly, Sun et al. (2024) introduced a
deep and responsible reasoning framework, which first con-
ducts a beam search on a graph from the entity within ques-
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tions and then acquires multiple reasoning paths as evidence
for answer generation. It is noteworthy that these methods
all treat the LLM as a tool for accomplishing specific tasks,
conceptualizing it as function executors, and relying on in-
context learning (Dong et al. 2022) or fine-tuning to refine
its outputs (Jiang et al. 2024). However, some studies (Zhao
et al. 2024; Zhang, Xu, and Deng 2023; Schumann et al.
2024) have demonstrated that LLMs can be induced to ex-
hibit human personality traits and role distinctions to under-
take complex reasoning tasks.

Communicative Agents. The primary objective of agents
is to collaboratively address complex tasks in a produc-
tive and efficient manner through autonomous communica-
tion and negotiation (Chan et al. 2023; Liang et al. 2023;
Yang et al. 2023; Kirk et al. 2024). LLMs such as Chat-
GPT and Vicuna (Chiang et al. 2023) are frequently em-
ployed as these communicative agents. Recently, numerous
studies have investigated the application of these agents in
various domains, including AI societies (Li et al. 2023a),
software development (Qian et al. 2023), translation (Liang
et al. 2023), arithmetic problem-solving (Du et al. 2023),
dialogue response generation (Chan et al. 2023), and strate-
gic planning among robots (Mandi, Jain, and Song 2023).
Specifically, Wang et al. (2023) guided ChatGPT to emulate
expert system reviewers, thereby improving the quality of
its literature retrieval queries. Kong et al. (2023) introduced
a strategically designed role-playing prompt method to en-
hance reasoning abilities by assigning appropriate expert
roles for tasks. Additionally, Shen et al. (2024) assessed the
changes in decision-making abilities when LLM assumes
different personality traits. Inspired by these studies, we ex-
plore the benefit of multi-agent role differentiation and de-
bates for complex reasoning on knowledge graphs.

Method
Task Formulation
Given a knowledge graph G consisting of N triples, rep-
resented as {(eli, rl, eli+1)|ei ∈ E , rl ∈ R, i ∈ [1, I], l ∈
[1, L]}, where eli and eli+1 denote the head and tail entity, re-
spectively, I is the number of entities, L denotes the number
of relations, and rl is the relation between entities, KGQA
requires machines to answer natural language questions q
based on retrieved evidence paths P = {pj}mj=1 with pj rep-
resenting a triple and m denoting the number of triples. In
this paper, we leverage LLMs to reason over P and generate
answers â word by word.

Overview
As depicted in Fig. 2, given a K-hop question q and the
initial topic entity eli within q, our framework first invokes
knowledge graphs to retrieve the set of candidate relations
R linked to eli. Then, it enables LLMs to filter out the most
relevant relation r̂l from R based on in-context learning.
Subsequently, the knowledge graph is invoked again to com-
plete the triple information from (eli, r̂l, ?) to (eli, r̂l, e

l
i+1).

Fourthly, DoG focuses on the current reasoning state and
employs LLMs to decide on the subsequent action based
on the completed triple: providing a direct answer to the

question or performing deep thinking with further iterations.
In the latter scenario, a multi-role LLM team leverages the
mentioned triple to transform the K-hop question to a K-1
hop (slightly easier) one through debate, with the tail en-
tity eli+1 being the subsequent topic entity for the simplified
question in the next iteration. All of these debate steps are
autonomously executed by the LLM team. The iteration will
be ended until LLMs generate answers in the fourth step.

Knowledge Graph Invoking
Reasoning on graphs requires LLMs first to identify relevant
knowledge triples. To facilitate this, we have designed two
interactive interfaces specifically tailored to retrieve these
triples from knowledge graphs. The interfaces are invoked
as needed, depending on the requirements.

• get relations(eli): This interface is designed to retrieve
the candidate relation set R associated with the entity eli.
For example, in Fig. 2, it is invoked to retrieve the candi-
date relation set of Joe Anderson.

• triple filling(eli, r̂l): This interface is responsible for ob-
taining the tail entity <eli, r̂l, ?> given the head entity
and the filtered relation. We will introduce relation filter-
ing in the next subsection.

The underlying mechanisms of these interfaces are imple-
mented through either SPARQL (for Freebase queries) or
specific matching (for questions in MetaQA). To facilitate
comprehension and generation by LLMs, all entities and re-
lationships above the interfaces are expressed in natural lan-
guage, with the conversion between a Machine ID (MID)
and a corresponding friendly name carried out exclusively
within the interfaces. The MID facilitates efficient access
to comprehensive details related to the entity. More specifi-
cally, in Freebase, the MID is a unique identifier assigned to
each entity, allowing for straightforward retrieval of entity-
specific information. The friendly name of the MID is a
natural language descriptor. For example, the MID of the
friendly name Jamaican is m.03 r3.

Relation Filtering
Through get relations(eli), we obtain a candidate relation set
R associated with the initial entity in the question. Subse-
quently, DoG selects the optimal relation r̂l from this set
through in-context learning. The prompt and in-context ex-
amples are detailed in the In-context Learning subsection of
the appendix. Specifically, DoG first utilizes LLMs to iden-
tify the first-hop problem to be solved in the given ques-
tion q. Then, it allows LLMs to choose the optimal relation
according to the mentioned sub-question. This serves as a
guiding principle for relation selection, avoiding the con-
stant reliance on the complete multi-hop question through-
out the entire reasoning stage, as seen in previous stud-
ies (Jiang et al. 2023a; Sun et al. 2024). We believe this
short-sighted greedy strategy can guide a correct progres-
sion on the graph, alleviating the need to account for fu-
ture inferential information regarding the multi-hop ques-
tion. For example, for the question in Fig. 2 “In what year
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work and career.

[critic]: I think what the expert said is wrong. Her results did not 
simplify the problem and get the problems that need to be solved 
in the next step.I think the new question should be “When did 
High Life  which was starred by Joe Anderson release?”

[linguist]: Critics' improvements are effective, but the final 
question still contains redundant information, which may 
introducing noise, so a more appropriate new question is 
“When did [High Life] release?”
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Figure 2: DoG framework. Given a question, our framework first enables LLMs to interact with knowledge graphs to retrieve
the most relevant triple. Subsequently, it employs a subgraph-focusing mechanism, allowing LLMs to attempt answering at each
reasoning step. If further reasoning is required, DoG leverages a multi-role LLM team to simplify the question from complex
to easy based on the retrieved triples.

was the movie Joe Anderson starring in released”, the first-
hop question to be addressed is “Which film starred Joe An-
derson?”. The linearized relation set is {∼directed by;
∼starred actors; ∼written by} (“∼” represents
a passive relationship), from which the optimal relation
∼starred actors can be easily selected.

Answer Trying
After obtaining the optimal relation, our architecture in-
vokes the triple-filling interface triple filling(eli, r̂l) to
acquire a complete triple, such as <Joe Anderson,
∼starred actors, High Life> in Fig. 2. Then,
DoG utilizes LLMs to determine whether the retrieved triple
can sufficiently support answering the question. If the triple
is insufficient, DoG prompts LLMs to deeply contemplate
the current question based on the provided triple. This al-
lows DoG to generate answers based on a single triple, thus
avoiding excessively long and potentially confusing paths
composed of multiple triples. The prompt and in-context ex-
amples are detailed in the In-context Learning subsection
of the appendix. Notably, if the maximum iteration limit is
reached without successfully generating an answer, the pa-
rameterized knowledge of LLMs is utilized to respond.

Question Simplifying
Once LLMs determine that a question is unanswerable with
the current retrieved triple, it represents that further explo-
ration is required. Inspired by how humans tackle complex
questions, our architecture employs a question-simplifying
strategy to transform questions from K hop to K-1 hop
based on the retrieved triple. Specifically, DoG utilizes a
team of agents with distinct roles to engage in debate, en-
suring the reliability of the reasoning process. The debate
team consists of three roles.

• Question simplifying expert (R1). This expert provides
initial simplifications for questions, which may contain
apparent errors. For example, the original question in Fig.
2 is initially simplified as “What are some notable films
in which Joe Anderson has acted?”. This is far from the
intention of the original question.

• Critic (R2). The critic examines the simplification efforts
of the above expert and offers suggestions for modifica-
tions. For instance, the above question is modified into
“When did High Life which was starred by Joe Ander-
son release?”.

• Linguist (R3). This role ensures that the simplified
question is not only semantically correct but also free
from redundant information of previously resolved sub-
questions. For example, the mentioned question is further
refined to “When did [High Life] release?”.

Due to the interdependency and progressive nature of the
roles played by the three agents, DoG employs a one-by-one
discussion strategy (Chan et al. 2023). Each agent, imple-
mented by ChatGPT, takes turns contributing to the ongoing
optimization of the simplified question, with the statements
made by other agents serving as references for guiding sub-
sequent remarks generation. After simplification, we obtain
a slightly easier K-1 hop question, prompting LLMs to un-
dergo iteration once again. In this way, the relation in the
first-hop sub-question is removed in the simplified question,
effectively avoiding the impact of false positive relations.
The iteration process, from knowledge graph invocation to
question simplification, continues until LLMs make an an-
swerable decision in the answer-trying module. The prompt
and in-context examples are shown in the In-context Learn-
ing subsection of the appendix.
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Method Class LM MetaQA WebQSP CWQ WebQ GrailQA
1-hop 2-hop 3-hop

KV-Mem

SL

- 96.2 82.7 48.9 46.7 18.4 - -
GraftNet - 97.0 94.8 77.7 66.4 36.8 - -
PullNet - 97.0 99.9 91.4 68.1 45.9 - -

EmbedKGQA RoBERTa 97.5 98.8 94.8 66.6 - - -
NSM - 97.1 99.9 98.9 68.7 47.6 - -

TransferNet BERT 97.5 100.0 100.0 71.4 48.6 - -
UniKGQA RoBERTa 98.0 99.9 99.9 77.2 51.2 - -
StructGPT

ICL
GPT-3.5-Turbo 97.1 97.3 87.0 72.6 - - -

KG-GPT GPT-3.5-Turbo 96.3 94.4 94.0 - - - -
KB-BINDER Codex 93.5 99.9 99.5 74.4 - - 58.5

ToG GPT-3.5-Turbo - - - 76.2 57.1 54.5 68.7
DoG

ICL
GPT-3.5-Turbo 98.6 96.6 90.9 88.6 58.2 78.2 77.8

DoG Qwen-14B 99.5 92.4 79.8 83.2 48.1 65.6 74.6
DoG Llama-3-8B 99.8 91.0 84.8 90.2 55.9 70.8 74.8
DoG GPT-4 100.0 99.0 96.0 91.0 56.0 80.0 80.0

Table 1: Comparison with previous state-of-the-art Supervised Learning (SL) and In-Context Learning based methods. The best
results for SL and ICL methods are marked in bold, and the second-best results are underlined. WebQ denotes the WebQuestions
dataset. The ToG measurement on WebQSP is based on the F1 score rather than EM (Hits@1).

Experiments
Dataset and Evaluation
We select five public datasets to evaluate the reasoning abil-
ity over knowledge graphs: MetaQA (Zhang et al. 2018),
WebQSP (Yih et al. 2016), CWQ (Talmor and Berant 2018),
WebQuestions (Berant et al. 2013), and GrailQA (Gu et al.
2021). MetaQA comprises a movie ontology derived from
the WikiMovies dataset (Miller et al. 2016) and contains
three sets of natural language question-answer pairs: 1-hop,
2-hop, and 3-hop. WebQSP contains questions sourced from
the WebQuestions dataset, which are answerable using Free-
base. CWQ is designed for answering complex questions
that require reasoning over multiple web snippets. GraiQA,
which tests three-level generalizations including i.i.d., com-
positional, and zero-shot, covers 3,720 relations and 86 do-
mains from Freebase. Following (Xiong, Bao, and Zhao
2024; Sun et al. 2024), we uniformly sample 500 instances
per type for the mentioned five datasets to reduce computa-
tional cost. We use exact match accuracy (Hits@1)
to evaluate the reasoning performance of our framework
and baselines following previous works (Jiang et al. 2023a;
Xiong, Bao, and Zhao 2024; Sun et al. 2024; Baek, Aji, and
Saffari 2023). For the experiment of integrating DoG with
GPT-4, we uniformly sample only 100 instances per type
from the mentioned datasets to reduce costs.

Implementation Settings
We preprocess the MetaQA dataset to construct a structured
knowledge graph, facilitating subsequent query and retrieval
operations. A local Virtuoso server is deployed for datasets
derived from the Freebase. We utilize the OpenAI API to
call ChatGPT (gpt-3.5-turbo-0125) and GPT-4 (gpt-4-0613).
Additionally, we employ Qwen-14B and Llama-3-8B, run-
ning on 8 V100 GPUs, to verify the flexibility of DoG. The
maximum number of debate rounds for the multi-agent team
is limited to three, with only the best unique relation being
recalled. We implement in-context learning across multiple
modules: specifically, 10 exemplars for Relation Filtering

and Answer Trying, and one exemplar for Question Simpli-
fying.

Baselines
Inspired by (Jiang et al. 2023a), we compare DoG with
previous state-of-the-art supervised learning and in-context
learning-based methods, to verify its effectiveness and supe-
riority. Supervised learning: KV-Mem (Miller et al. 2016),
GraftNet (Sun et al. 2018), PullNet (Sun, Bedrax-Weiss, and
Cohen 2019), EmbedKGQA (Saxena, Tripathi, and Taluk-
dar 2020), NSM (He et al. 2021), TransferNet (Shi et al.
2021), UniKGQA (Jiang et al. 2023b). In-context learning:
StructGPT (Jiang et al. 2023a), KG-GPT (Kim et al. 2023),
KB-BINDER (Li et al. 2023b), ToG (Sun et al. 2024). The
baselines are detailed in the Baseline Introduction subsec-
tion of the appendix.

Reasoning on Knowledge Graphs
Main Result Table 1 presents a comparison across five
public datasets. Taking GPT-3.5 as an example, we ob-
serve that DoG enables it to achieve competitive results
on MetaQA and the best results on the other four datasets
compared with baselines. Specifically, DoG outperforms
the best-supervised method, UniKGQA, by 11.4% on We-
bQSP. Additionally, it surpasses the best in-context learn-
ing method, ToG, by 23.7% and 9.1% on WebQuestions
and GrailQA, respectively. These datasets comprise com-
plex and compositional questions. Therefore, these results
not only highlight the effectiveness and superiority of DoG
but also confirm its capability for complex reasoning.

Flexibility Verification We conduct experiments on the
aforementioned datasets to explore whether DoG enables
other LLMs, including QWen, Llama, and GPT-4, to achieve
complex reasoning on knowledge graphs. Experimental re-
sults in Table 1 show that DoG facilitates improvements in
some cases compared to GPT-3.5. Specifically, DoG with
Llama achieves a 1.6% improvement on WebQSP. It also
allows GPT-4 to achieve the most significant improvement
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Num. Settings MetaQA2 MetaQA3 WebQSP CWQ WebQ GrailQA Avg.
1 w/o SF and QS 76.6 38.8 77.4 43.0 67.8 69.3 -
2 w/ SF and R1 91.4+14.8 83.4+44.6 81.0+3.6 50.0+7.0 69.8+2.0 75.2+5.9 +13.0
3 w/ SF, R1 and R2 90.6+14.0 85.2+46.6 83.6+6.2 52.2+9.2 72.2+4.4 78.2+8.9 +14.9
4 w/ SF, R1, R2, and R3 96.6+20.0 90.9+52.1 88.6+11.2 58.2+15.2 78.2+10.4 77.8+8.5 +19.6
5 w/ SF and QS’ 86.6+10.0 68.2+30.6 81.4+4.0 46.8+3.8 71.2+3.4 71.8+2.5 +9.3

Table 2: Ablation results. MetaQA# denotes the #-hop split of this dataset. SF and QS refer to the subgraph focusing and
question simplifying, respectively. R1, R2, and R3 are the different experts in QS. QS’ indicates that the tasks of the mentioned
three roles are fused into a single agent. Avg. represents the average performance increase across the datasets.

Figure 3: Impact of debate rounds for LLM reasoning on
knowledge graphs. It is unnecessary to simplify the question
for the 1-hop question within MetaQA.

on the mentioned datasets. These results clearly demonstrate
the flexibility and effectiveness of our architecture. We ob-
serve that the performance of DoG with Qwen is slightly
lower than with other LLMs. This could be attributed to
its marginally weaker complex reasoning capabilities com-
pared to other LLMs.

Ablation Studies

We conduct ablation experiments on the aforementioned
datasets to analyze the contribution of each component of
DoG. The ablation results for DoG with GPT-3.5 are pre-
sented in Table 2. We perform experiments on the 2-hop
and 3-hop splits of MetaQA, as the 1-hop questions do not
require complex reasoning. Row 1 shows the results with-
out the subgraph-focusing and question-simplifying compo-
nents. In other words, this configuration allows LLMs to an-
swer complex questions directly after collecting the whole
set of evidence triples, rather than reasoning step by step.
We observe a significant performance decrease compared to
the results in Row 4, strongly demonstrating the effective-
ness of the mentioned modules. Rows 2 and 3 aim to ver-
ify the contribution of the expert role in the debate team.
The results show consistent improvements across five pub-
lic datasets, suggesting that each agent plays a critical role in
simplifying questions. This also highlights the importance of
transforming complex questions into simpler ones for LLMs
step-by-step reasoning on knowledge graphs. Row 5 aims to
verify the necessity of the debating process, where the tasks
of the three roles are performed by a single agent. The aver-
age result decreases by 10.3% compared to Row 4, strongly
supporting the effectiveness of the debating mechanism.

Analyses for Debate Rounds
We conduct experiments to explore how the number of de-
bate rounds affects LLM reasoning on knowledge graphs.
Fig. 3 shows the performance trend of DoG with GPT-3.5
as the number of debate rounds increases across the five
datasets mentioned. We observe that DoG achieves the best
results on the majority of datasets with just a single round
of debates. Additionally, increasing the number of debate
rounds leads to a performance decrease in some datasets.
DoG utilizes a one-by-one discussion strategy, which makes
each agent aware of the historical debate record. This makes
the agents more susceptible to being influenced by the views
of others, potentially leading to inaccurate decisions for
question simplifications. We may also conclude that the
agent is sufficiently strong to achieve the goal of instructions
without needing iterative debates.

Exemplar Impacts
DoG leverages in-context learning to guide LLMs in per-
forming relation filtering, question simplification, and an-
swer trying during iterative reasoning. Specifically, DoG
provides instructions and exemplars to help LLMs achieve
these objectives. We conduct experiments on five public
datasets to explore the impact of the number of exemplars on
LLM reasoning. Fig. 4 shows the analyses for the mentioned
three modules. In Relation Filtering, we observe that rea-
soning performance improves as the number of exemplars
increases in the majority of datasets. However, reasoning er-
rors caused by relation filtering account for a large propor-
tion, which we will discuss in the next subsection. In Ques-
tion Simplifying, the performance improvement is not sig-
nificant with the increase in the number of exemplars, likely
due to the complexity of this task. Converting questions
from complex to simple step-by-step may be challenging for
LLMs, and they may not be able to infer strategies for ad-
dressing this issue from exemplars. In Answer Trying, we see
that reasoning performance improves with the increase in the
number of exemplars in most cases. In summary, the num-
ber of exemplars plays a critical role in decision-making,
especially for less complex tasks. In contrast, for more com-
plex tasks, detailed instructions may have a greater impact
on LLM reasoning.

Error Analyses
To analyze the deficiency of DoG, we randomly select 50
failure cases from each dataset, including MetaQA, We-
bQSP, and GrailQA, for manual inspection. Fig. 5 shows
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Figure 4: Impacts of the number of exemplars on the performance of LLM reasoning. It is unnecessary to perform question
simplifying for the 1-hop question within MetaQA. DoG does not utilize LLMs to generate answers for questions within
MetaQA. Instead, it provides answers based on the last retrieved triple after iterative reasoning.

Figure 5: Analysis of 50 sampled failure cases per dataset. We visualize the proportion of factors contributing to errors. We do
not perform manual inspection for the failure cases in CWQ and WebQ due to the lack of annotations, such as those for the
ground-truth relations.

the proportion of factors contributing to these errors. We ob-
serve that relation filtering errors are quite common. This
may be caused by too many relations linked to the entities
in questions, making it difficult for LLMs to accurately filter
the most relevant relation. Iteration stopping errors denote
LLMs make inaccurate decisions in the answer-trying mod-
ule, either terminating the iterative reasoning too early or too
late. This type of error is particularly prevalent in GrailQA
cases. Answer aliasing errors mean the generated answers do
not have the same description or wording as the annotations,
even though they are semantically consistent. This error can
be mitigated by introducing a rich collection of aliases. An-
swer generation errors refer to that LLMs provide incorrect
answers based on accurately retrieved triples and simplified
questions. Question simplifying errors represent that LLMs
fail to transform questions from complex to easy. Addition-
ally, other errors account for 4% of the failure cases in each
dataset. This type of error often occurs due to API access
issues, an excessively long context, or exceeding the token
limit per minute. More details can be found in the Failure
Cases subsection of the appendix.

Conclusion and Future Work
This paper proposes an iterative interactive framework,
DoG, for knowledge graph question answering. It lever-
ages the interactive learning and reasoning capabilities of
LLMs to perform debating on knowledge graphs. Specifi-

cally, it employs a team of multi-role agents to transform
questions from complex to simple, enabling LLMs to per-
form reliable step-by-step reasoning based on the retrieved
knowledge triples. Extensive experiments across five pub-
lic datasets demonstrate the effectiveness and superiority of
DoG in the few-shot setting, outperforming nearly all in-
context and supervised learning-based baselines. Addition-
ally, the integration results with different LLMs verify its
flexibility. In the future, we will explore enhancing relation
filtering performance from knowledge graphs given the en-
tity of questions.
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